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Abstract. We apply the nonlinear WENQO (Weighted Essentially Nonoscillatory) scheme to the spatial dis-
cretization of the Boltzmann Transport Equation modeling linear particle transport. The method is a finite volume
scheme which ensures not only conservation, but also provides for a more natural handling of boundary conditions,
material properties and source terms, as well as an easier parallel implementation and post processing. It is nonlinear
in the sense that the stencil depends on the solution at each time step or iteration level. By biasing the gradient
calculation towards the stencil with smaller derivatives, the scheme eliminates the Gibb’s phenomenon with oscilla-
tions of size O(1) and recudes them to O(h"), where h is the mesh size and r is the order of accuracy. Our current
implementation is three- dimensional, generalized for unequally spaced meshes, fully parallelized, and up to fifth order
accurate (“WENOb”) in space. For unsteady problems, the resulting nonlinear spatial discretization yields a set of
ODE’s in time, which in turn is solved via high order implicit time-stepping with error control. For the steady-state
case, we need to solve the non-linear system, typically by Newton-Krylov iterations. There are several numerical
examples presented to demonstrate the accuracy, non-oscillatory nature and efficiency of these high order methods,
in comparison with other fixed-stencil schemes.

1. Introduction. In the deterministic modeling of uncharged particle transport, physical processes are de-
scribed by the Boltzmann transport equation (BTE) which is a linear integro-differential equation to be solved for
the scalar unknown ¥, usually called the particle flux. During the solution process, iterative methods are routinely
used to solve the large systems of equations resulting from various discretizations, especially when it comes to solving
the steady-state problem. As noted in [1], such approaches can be viewed as iterative solutions of a matrix equation

(1.1) Az =b

for the unknown vector = representing scalar fluxes ¥, energy densities, or other integrated quantities of interest.

The spatial discretization has been traditionally done by some fixed stencil finite difference or finite element
method typically solving for point values of the solution, thereby resulting in a “node-centered” scheme.

Finite volume schemes, on the other hand, were invented for the numerical solution of high speed fluid dynamics
where conservation is crucial. Since they solve for the cell average of the unknown instead of its point values, they are
sometimes refered to as “cell-centered” schemes as well. Application of these schemes to the BTE ensures not only
conservation, but also provides for a more natural handling of boundary conditions, material properties and source
terms, as well as an easier parallel implementation and post processing. The finite volume scheme also lends itself to
an efficient implementation of high order spatial discretizations.

Material interfaces and time-dependent large source terms can introduce severe oscillations even with second
order fixed stencil schemes. Slope limiting, or essentially nonoscillatory (ENO) spatial interpolations eliminate these
oscillations, and make higher-than-second-order spatial accuracies possible. A newer variation of these nonlinear
schemes is the Weighted ENO (WENO) scheme that makes the stencil transition less abrupt and boosts the accuracy
in smooth regions. For unsteady problems, the resulting nonlinear spatial discretization yields a set of ODE’s in time,
which in turn is solved via high order implicit time-stepping with error control. For the steady-state case, we need to
solve the non-linear system, typically by Newton-Krylov iterations. Both of these approaches would ideally expect a
preconditioner in order to obtain a reasonable rate of convergence.

We will discuss the advantages of using an ENO/WENO method, as well as the various issues introduced by
such nonlinear methods originally designed for computing shocked fluid flows. There will be several 1-D, 2-D, and

* This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract W-7405-Eng-48.
 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94550.
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3-D numerical examples presented to demonstrate the accuracy, non-oscillatory nature and efficiency of these high
order methods, in comparison with other fixed-stencil schemes.

The paper is organized as follows. In §2, we describe the continuous problem from which the discrete linear
system (1.1) is derived. In §3, the exact form of (1.1) is established via the introduction of the discrete ordinate
angular discretization together with the nonlinear spatial discretization. Although these discretizations are described
elsewhere in the literature, we present them in some detail for the sake of clarity and completeness. In §4 we show

several numerical results, and close with concluding remarks in §5.

2. Background. In this section we first introduce the linear time-dependent BTE in three dimensional box
geometry with general scattering [2]. The spatial domain is the box D = {r = (z,9,2)|az < < bs,ay <y <
by, and a, < z < b, }, the direction variable is Q € §?, the unit sphere in R3, the energy variable is E € (0, 00), time
is t, and the equation in the flux ¢ = 9 (r,Q, E,t) is given by

U(lE‘) %%(’l“, Q,E,t)+Q-Vi(r,Q,E,t) + o(r, E)Y(r,Q, E, t) =
(2.1)
I [ ¥(r, ¥ B t)os(r, Q- Y, B — E)dYdE' + q(r,Q, B, 1),

with initial condition
(2:2) %(r,Q, B, to) = 4°(r,Q, E)

where Vi) = (0v/0x, 0 /0y, 0 /dz), v(E) is the particle speed, and ¢° is the initial state at time t = #o.

The code employs a general algorithm that solves for multiple energy groups via a semi-discretization using a
finite number of energy “bins”. However, for simplicity of notation and clarity of exposition we shall assume a single
energy group E for the rest of this paper, and thereby remove the energy-dependency from %, v, o and ¢ in (2.1).

The scattering integral on the right hand side of (2.1) is handled by expanding the flux (r,,t) in surface

harmonics according to

Y= Y Y@

n=0m=—n

Here, Y,*(Q) is a surface harmonic defined by
Y Q) = ai P (€)m (@),
where Q = (1,7, €) = (sin 6 cos p, sin §sin ¢, cos §), P,™! is an associated Legendre polynomial [3], and

(©) cosmy, if m > 0, and
Tm(p) =
14 sin |m|¢p, if m < 0.

The constants a,' are defined by

m 2n+1)(n— |m|)! 12
" [2(1 4 mo)m(n + |m])! ’

where 4, v is the Kronecker delta, and
o2 = [ v v,
82

is the (n, m)* moment of +. Similarly, the source q is expanded as

gr, ) =D > ar Y (Q),

n=0m=-n
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where
) = / 4(r, 9, ¥ Q).
52

For ease of exposition in what follows, we have elected to use real-valued surface harmonics, all scaled to have unit
norm in L*(8?).

Given 1 in the above form, one is able to rewrite the scattering integral in the form

/ ao(r, Q- Q)p(r, @ )dY =Y en(r) Y ST (V)
52 n=0

m=—n

where the o, , are given by

1
Gun(r) = 21 / 4 (ry 10) Pa (10 dpo,
1

and where pg is the cosine of the scattering angle. The total cross section o is given by

1

o(r) = oa(r) + 27r/ 0os(r, po)dpo = oa(r) + os,0(r),

-1

where o, is the absorption cross section.
Substituting the appropriate terms into (2.1), the equation to be solved now becomes:

TE ) + Q- V(1) + o (r)e(r, Q) =
(2.3)
Z:o=0 O'S,n(T) EZ:—n d)g (T’ t)YT:n(Q) + q(?", Q: t)a
Boundary conditions must also be specified so as to make (2.3) well-posed. Various options include a reflecting

condition on a face, or a Dirichlet condition in which the incident flux is specified on a face. For simplicity, we will
consider only the latter case. Namely, we will consider boundary conditions of the form

(2.4) P(r, Q) = g(r,Q) for all r € D and Q € S with 7i(r) - Q <0,

where 7i(r) is the outward pointing unit normal at r € 9D.

3. Discretization of the 3-D Problem. We now turn to the angular, spatial and temporal discretizations of
(2.3). In previous work [4], we derived a matrix version of the well-known diamond difference discretization scheme for
the 1-D slab problem analogous to (2.3)-(2.4). We extend that development here to 3-D problems. The first subsection
deals with the quadrature rules for approximating integrals on S2, the next describes the spatial discretization, and

the final subsection considers the discrete-ordinates method, i.e., the combined discretization of problem (2.3)-(2.4).

3.1. Quadrature Rules. The quadrature rules to approximate integrals on S* use the standard symmetry

assumptions. Following Carlson and Lathrop [5], the quadrature rules we consider are of the form

(3.1) /2 PO~ D weth(e),

where Qp = (e, me, &), forall £ =1,..., L, with L = v(v+2) and v is the number of direction cosines (v = 2,4,6,...).
Since Q; € S for all ¢, we have

(3.2) pe +mp +& =1 for all £



With full symmetry, latitudinal point arrangement, and v direction cosines, (3.2) becomes
512 +§]2 +§3/2+2—i—j =1
fori=1,2,...,v/2 and j =1,2,...,v/2 — i+ 1. This last equation can be solved to give

o201 -3¢
(33) g=g+a-n2i=%)
v—2
fori=1,...,v/2and 0 < £} < 1/3.
For the weights, first note that a constant function on S® must be integrated exactly for all v, and so we must

have

L
47'r:/ l-dQ:ng.
§2 =1

For v = 2 or 4, by requiring that weights be invariant under 90° rotations of the Q coordinate system, it is easily seen
that each weight must be the same. For v > 4 there are v/2 distinct weights, and for these sets one can determine

the weights by requiring that

L
4a
4 =
(3.4) ZW& 2n+1’
(=1
for n =0,...,v/2 — 1. These conditions guarantee that as many even powers of £ as possible are integrated exactly

by the quadrature rule. Note that due to the symmetrical placement of the &, along the & axis, all odd powers of &
are integrated exactly. For v > 22, demanding that (3.4) holds for all n = 0,...,v/2 — 1 leads to negative weights.
As an alternative, one could simply demand that the weights are all equal, in which case (3.4) always holds for n =0
and 1.

For either type of quadrature rule, we only require that (3.4) holds with n = 0 and 1, and that all the weights are
positive. Finally, it also follows from the symmetrical placement of the direction cosines that the following additional
results hold:

L L L
(3.5) ngm =0, Zwlm =0, andZu)g& =0.
=1 =1 =1

3.2. Finite Volume Spatial Discretization. In the formulation of the finite volume method, we first dis-

cretize D into cells (also called “zones”). Introduce the spatial grids

awEw% <---<.’Ei_% <wi+%<---<.’cM+%Ebw,
ay =Y1 <---<yj,%<yj+%<---<yJ+%Eby,and
a: =23 <+ <z_p <zya <o <zgyr =b,

and define r;j, = (i, y;, 2k). Next, define

Ami:mi—%_mi+% fori=1,...,.M
ij:yj—%_yj-i-% forj:l,...,J, and

Azkzzkfé—zkﬁ_% fork=1,...,K.

Also define Aryjp = Az;Ay;Az,. The {r;j} are referred to as nodes (or grid points), and function values at these

points are called nodal values. Assume that o and os,, have constant values on each cell

Zijr = {T|$17% SB< g1, Y51 <Y<Yj11,2-1 <2< Zk+%}7
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denoted by o;; and aﬁ{’,ﬁ, respectively. Function values that are constant on cells will be referred to as cell-centered
values. We use 1);;, to denote the approximation to t(r;;x), the true solution at r;jj.

To obtain the finite volume method, average equation (2.3) over cell Z;;,. We then have a semi-discrete form

199, _ -

ROTEE (O, 1) + yxowre fz,-]-k Q- Vip(r, Q, t)dr + 7419ijk (1) =
(3.6)

Zzozo 6';:{712 E:;:—n 7nm,zjk(t)Y'r:n(Q) + Qijk(Q, t):

where the quantities marked with a bar are “cell-averaged” (in essence integral) quantities, and not point values. In

particular:

"Zi,]'ak (Qa t) = ﬁ”k fzijk ¢(T: Q, t)d’l",
(3.7 ijk(t) = ﬁm fzijk @(r, t)dr,

3,k (Q2,t) = ﬁ fzﬁk q(r,Q, t)dr,

For the first integral in (3.6), use Green’s Theorem to obtain

1 no -
Q . Q — _— . . —_ . .
AT‘ijk /Zijk V¢(T7 ’t)dr Ax; (wH_%’J’k 1/)1_ %'J’k)
(38) + Aiyj(dji,j+%,k —Piioin)
£

A—zk(wi’f””% - ¢i,j,k—1%)'

The averaged values with half-indexed subscripts now denote face values over each respective cell face. These too are
cell-averaged values, but over faces instead of cells:

; 1 Yitd  [Fe+d Q. Hduvd
¢i+%,]‘,k = Ayl ) w(x”%,y,z, ,t)dydz,
i-3 k-3

and similarly for the other face values.

Note that with the substitution of (3.8) into (3.6) we have both cell-averaged and face-averaged quantities. To
close the system, we express the face values in terms of the cell averages, often called the reconstruction procedure in
the literature. This is the step where the spatial accuracy is determined in any finite volume scheme. For example,

if we simply take

7 "ﬁ,‘,k,ifﬂ>0
(3.9 ¢i+%’j’k _ Vi :
Yig1,4,k, if p <0

we get the simple upwind, or “step” method. By replacing the face value by the average of the cell values on each
side of the face we arrive at the diamond difference approximation:

1,- _
(3.10) 1/)i+l,j‘k = 2 (wi,j,k + 1/)i+1,j,k)

2

If the interpolation scheme that relates the face- and cell-averages to each other is higher order, the spatial
accuracy will be (at least formally) higher order as well. With linear interpolation schemes, however, oscillations will
occur near discontinuities in the solution, in the source term, or in the material interfaces, or even at smooth, but
steep gradients in the solution.

The WENO (“Weighted Essentially Nonoscillatory” ) method is in fact an interpolation scheme where the weights

used in the linear combination of the interpolation points vary with the size of the derivative. The larger the gradient
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is near an interpolation point, the smaller the weight will be for that point. The idea goes back to the TVD
(Total Variation Diminishing) method ([6]) which eliminated oscillations by choosing the left or right biased slope
for reconstruction. The ENO (Essentially Nonoscillatory) [6] scheme raised the inherently second order accuracy of
the TVD scheme by relaxing the TVD property to “essentially nonoscillatory” and choosing the interpolation stencil
matching the order of accuracy from a set of available ones. With ENO the oscillations are not completely ruled out,
but their size is reduced from O(1) to O(h"), where r is the order of accuracy. That is, in essence, oscillations were
eliminated. The WENO scheme improved on this concept by not choosing, but rather, weighing the stencils by their
smoothness.

3.3. The Weighted Essentially Nonoscillatory Interpolation. In this section we give a brief overview
of the specific WENO method used in the numerical experiments. The formulae come mostly from [6], but for
completeness we include them here. For clarity, we present the 1-D version of the interpolation, which can be readily
used in a direction-by-direction fashion to reconstruct all three spatial dimensions in (3.8).

Given a cell averaged grid function {;}}_, on a set of grid cells {z;} corresponding to a grid {x]-_%};’:l, we

approximate v; +1 at the cell faces via a weighted linear combination of all possible interpolations:

k—1
v, 1= E w,v'™),
itz 7=0 itz

where typically & = 2 (for WENO3) or k = 3 (for WENO5). The v;:_)% are the various interpolated values using
polynomials corresponding to stencil r. The interpolation used for each stencil r can, and in our code it does, take
into account variable grid sizes, so no assumption of equally spaced grids is made.

The weights w, are given by:

ar = S
T (et+Br)?
For the two most commonly used WENO schemes we have:
()if k = 2:
do=2
di=1
(3.11) T )
Bo = (Vit1 — ;)
B1 = (Bi — U;—1)
(ii)if k = 3:
do=3
dy =3
ds =
(3.12) e
Bo = 15 (Ui — 20i41 + Viy2)” + 7(30; — 4Viq1 + Viy2)
Br= 1301 — 20 + Vig1)® + F (Vi1 — Vig1)®
B2 = 13(Biio — 201 +05)° + 2(Bim2 — 40i_1 + 30;)°



3.4. Boundary Conditions. For the boundary conditions in (2.4), when # = xo, the normal ﬁ(r%,j,k) =

(—1,0,0) for all j, k. Hence, ﬁ(réjk) -Q = —pu, and for u > 0 we have

(3.13) P

gk 9%,;‘,19(5 Q(T%,j,k))-

[V

For y = yo, h’(ri,%,k) = (0,-1,0) for all 4, k, and so ﬁ(ri,%,k) -Q = —n, and for n > 0 we have

(3.14) J)z%k =91k
For z = 2o, ﬁ(ri,j,%) = (0,0, —1) for all 4, j, and so ﬁ(ri,j,%) -Q = —¢, and for £ > 0 we have
(3.15) ii,j,% = 9,,%

The other three cases are handled similarly. Of course, for a given Q = £, only three of the above six cases can hold.

(The quadrature rules defined above guarantee that no component of 2 is ever zero.)

3.5. Temporal Discretization. The semidiscrete form (3.6) can be written as a matrix operation on a solution

vector ¥ = (i k1)
V3¢ 4+ TE¥-—F=0

where: ¥ = %—‘f is the temporal derivative, T represents the semidiscretization in space and direction, and F includes
source and boundary terms. In compact notation, we may write it as a system of ODE’s. Note that the node centered

version of the scheme would become a differential- algebraic equation (DAE) system
F(t,®,¥) =0

because the boundary values would have to be solved for simultaneously with the interior values.

Since the code is general enough to have some node-centered spatial discretizations (such as Petrov-Galerkin),
we use the same temporal solver for all spatial options. Hence for uniformity the time integration is accomplished via
the IDA (Inexact Newton Differential/Algebraic Equation) package. It uses backward differencing methods which

are variable in order (up to fifth order in time) and stepsize, and are also implicit.

4. Numerical Experiments. We now present several numerical results in 1-; 2-; and 3-D, using the same
three-dimensional code, but simulating the lower dimensional problems by creating a very large (on the order of 10°)
single grid cell in the irrelevant dimension. The initial condition in (2.2) is ¥°(r,Q, E) = 0 for t = 0 in all cases below.
Also, the boundary conditions used were all Dirichlet BC and (2.4) was set via g = 0 at all incident boundary faces.

4.1. 1-D Examples. We now present some time-dependent problems in 1-D slab geometry pointing out the
salient features of the WENQO method when compared to the more traditional, linear spatial discretizations.
(1) Single material, steady source. In this case the cross sections were set to o = 0.1, o; = 0.01 with the source term
defined by

10, if z € [0.4,0.6]
0, otherwise

We used M = 50 grid cells and compared WENO3 to the Petrov-Galerkin finite element (node centered) scheme and
the first order upwind scheme of (3.9).

As it is illustrated on Figure 4.1, the third order WENO method can capture sharp transitions and corners
significantly better than the first order accurate upwind method, while neither one produces oscillations. When
compared to Petrov-Galerkin, it is clear that P-G creates large oscillations (and therefore negative fluxes) especially
at the beginning stages of the development of the profile. This problem actually has a non-zero steady-state solution,
to which the WENO3 method seems to converge faster than either of the other methods, as shown on the last figure
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of the series. In explaining this superior performance in convergence, we conjecture that the higher spatial accuracy
is the explanation. Recall that the upwind method is first-, P-G is second-, and WENO3 is third-order accurate in
smooth regions.

It is also interesting to compare the tested methods to a very fine grid upwind solution, which, in some sense,
should be the most “reliable” in converging to the correct physical solution under grid refinement. On Figure 4.2 we
show the temporal behavior of a single point located at x = 0.6 and include a 1000 cell upwind solution for reference.
Note how the WENO is extremely close to the “super-fine” upwind profile, while the other two methods are off by
about 10%.

(2) Single material, steady point-source. In order to test the method for a very narrowly supported pseudo point-

source, we ran the same problem as in case (1) above, but with a source defined as

_ [10, if z €[0.48,0.52]
1= 0, otherwise

where now the source is nonzero in only two grid cells. This is a challenge for spatial discretizations which are higher
than first order, because the jumps caused by the source are closer to each other than the stencil width itself. We
now included WENOQOS) in the comparison to push the limits of the scheme for the WENO5 scheme uses a stencil that
is 5 cells wide.

As shown on Figures 4.3 and 4.4, the behavior of the WENO schemes is still acceptable. They produce no
oscillations at the base of the source, but they both overshoot the “best” solution, the super-fine upwind. The
expectation is that as the grid is refined the behavior will be identical to that of the previous case, since the distance
between locations of the large gradients will then be several grid cells wide.

(3) Thin/thick materials, large unsteady source. We now test the code on a two-material problem defined by:

0.0001, if z €0,0.1]
o(x) = .
100, otherwise

and the source, localized by z € [0, 0.1], changes in time as:

8 x 1012, ift € [107°,4 x 107°]
q(t) = .
0, otherwise

The suite of methods tested now includes not just WENQO3 and WENOS, upwing, and P-G, but the Simple Corner
Balance (SCB) and the Diamond-Difference with negative flux fix-up (D-D) methods as well; both of the latter are
cell-centered schemes. We compare all these methods on a grid of M = 200 cells with a very fine grid upwind solution
on 5000 cells. The latter is again guaranteed to converge to the right solution under grid refinement.

An examination of Figure 4.5 reveals the two salient features of the WENO scheme: (i) its nonoscillatory nature
and (ii) high order of accuracy in smooth regions. The latter property is more pronounced when the solution has
areas of smooth variation. In Figure 4.5 we show close-ups of the highly varying regions on the right side of each
snapshot. These confirm our expectation of the WENQO scheme coming very close to the superfine solution, while the
lower order schemes produce large errors near extrema and/or oscillations near steep gradients. To avoid having to
include a large number of plots, we chose to use the integrated quantity phi in Figure 4.5
(4) Thick/thin materials, large unsteady source. If we reverse the two material properties, but leave the source term

as in Case (3), we can test the code on a “thick-to-thin” problem. Thus set:

{ 100, if z €[0,0.1]
o(z) =
0.0001. otherwise

In this case the high order of accuracy offered by the WENO method is quite pronounced near the corner regions
of the profiles. The WENO3 and WENQOb) schemes seem to give the same accuracy as the upwind scheme on a very
fine grid - but with 1/25th of the number of cells.



4.2. 2-D Test Problem. The method is now tested in 2-D mode using the same code, but now the (single)
cell in the z-direction is very large to simulate a 2-D slab. Initial and boundary conditions are again set to be nil,
and the grid is a 300 x 300 Cartesian mesh in a [0,100] x [0, 100] square domain. Cross sections were taken to be
o =0.001 and o, = 0.001, and the source was defined by:

[ 1, if (z,y) €[33.25,66.75] x [33.25,66.75]
1= 0, otherwise

This was actually a steady-state simulation where we used the KINSOL package as our nonlinear solver. The same
results were arrived at running the unsteady option out to steady-state.

On the top portion of Figure 4.7 we show a contour plot of the flux when both direction are positive. We also
ran the upwind and SCB methods for comparison. The latter showed some oscillations and severe inaccuracy in
capturing the middle part of the profile, even at steady-state. The upwind method, due to its dissipative nature,
“smoothed” out the corners. Both WENO3 and WENOb performed well, but except for the sharp left corner, there
was little difference between the two.

4.3. 3-D Test Problem. We finally ran the code in fully 3-D mode, on a domain [0, 1] x [0,1] x [0,1] with
40 x 40 x 40 grid cells. Cartesian mesh in a [0, 100] x [0, 100] square domain. In this case we set & = 10.0 and o, = 0.

The source term was again in the middle:

1, if (z,y,2) € [4,.6] x[4,.6] x [4,.6]
q= .
0, otherwise

This case was again run in steady-state mode and then verified by the unsteady option.

On Figure 4.8 we show the two WENO options, Petrov-Galerkin and upwind on two different grids (40 x 40 x 40
and 100 x 100 x 100) at the middle cut of y = 0.5,z = 0.5. The finer upwind solution was not run on a grid
that is orders of magnitude finer than the others, hence it should not be taken now as a benchmark solution. It
is included merely to show the difference grid refinement makes in the accuracy of the solution. The WENO3 and
WENOS solutions are expected to be better, and in fact they are somewhat different from each other as well. The

Petrov-Galerkin method, on the other hand, exhibits sizeable oscillations/negative fluxes near the profile corners.

5. Discussion. We have presented a new application of the WENO scheme for the spatial discretization of
the Boltzmann Transport Equation. Developed for highly nonlinear systems of partial differential equations, such
as the Euler and Navier-Stokes equations, the scheme was designed to accurately compute shocked fluid flow. As
such, it was an unlikely candidate for application to a scalar and linear integro-differential equation. Indeed, the
notion of “slope-limiting,” and in general, of nonlinear schemes has been known for over two decades, yet unutilized
(to our knowledge) in the transport arena. However, once the realization is made that it is merely an interpolation
technique, it is a natural fit for any problem where the problem is linear, but the coefficients or the source terms are
discontinuous and thus give rise to steep gradients in the solution.

We hope to have demonstrated that the WENO scheme can be very useful for many problems, especially
unsteady ones. While they do not guarantee positivity, by reducing the size of oscillations to O(h"), in practice they
give positive fluxes in an overwhelming majority of the cases where other linear schemes fail to do so. We have shown
that the high order of spatial accuracy on a relatively coarse grid can be interchangeable with a very fine grid spacing
using a low order method. This translates into an often sought-after, and now possible trade-off between processor
power and memory capacity. The WENO method seems to be a good choice especially for cases where the solution
simultaneously has steep gradients/discontinuities and large areas of smooth variations.

For future work, we intend to further improve on the essentially nonoscillatory property to ensure positivity by
lowering the order of accuracy in those rare regions where small negative fluxes still remain. We also plan to develop
better sweep-preconditioners that mimic the behavior of the nonlinear discretization used in the WENO scheme
itself. Furthermore we need to conduct rigorous grid refinement studies to verify the order of accuracy at least in the
ideal situation where the source term is smooth and an exact solution exists (no scattering). Finally, more testing is

necessary on large 3-D problems with multiple material and different source terms.
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F1G. 4.3. Comparison of the WENO, P-G, and upwind (coarse and fine grid) methods for p >0 att =2 x 1078
(bottom fig.is close-up)
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Fi1G. 4.6. Comparison of the WENQO, P-G, SCB, and upwind methods with the fine-grid upwind for the thich-to-
thin problem.
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Fic. 4.7. Comparison of the WENO, SCB, and upwind methods for p > 0,7 > 0 at the j = 105 grid line
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